Functional dissection of the conjugative coupling protein TrwB.
نویسندگان
چکیده
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
منابع مشابه
Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation.
TrwB is the conjugative coupling protein of plasmid R388. TrwBDeltaN70 contains the soluble domain of TrwB. It was constructed by deletion of trwB sequences containing TrwB N-proximal transmembrane segments. Purified TrwBDeltaN70 protein bound tightly the fluorescent ATP analogue TNP-ATP (K(s) = 8.7 microM) but did not show measurable ATPase or GTPase activity. A single ATP binding site was fou...
متن کاملStructural independence of conjugative coupling protein TrwB from its Type IV secretion machinery.
The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupl...
متن کاملThe ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors.
Conjugative systems contain an essential integral membrane protein involved in DNA transport called the Type IV coupling protein (T4CP). The T4CP of conjugative plasmid R388 is TrwB, a DNA-dependent ATPase. Biochemical and structural data suggest that TrwB uses energy released from ATP hydrolysis to pump DNA through its central channel by a mechanism similar to that used by F1-ATPase or ring he...
متن کاملConjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes.
Conjugative coupling proteins (CPs) are proposed to play a role in connecting the relaxosome to a type IV secretion system (T4SS) during bacterial conjugation. Here we present biochemical and genetic evidence indicating that the prototype CP, TrwB, interacts with both relaxosome and type IV secretion components of plasmid R388. The cytoplasmic domain of TrwB immobilized in an affinity resin ret...
متن کاملPredicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion.
The Agrobacterium T-DNA transporter belongs to a growing class of evolutionarily conserved transporters, called type IV secretion systems (T4SSs). VirB4, 789 aa, is the largest T4SS component, providing a rich source of possible structural domains. Here, we use a variety of bioinformatics methods to predict that the C-terminal domain of VirB4 (including the Walker A and B nucleotide-binding mot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 192 11 شماره
صفحات -
تاریخ انتشار 2010